

Yulia Furletova (JLAB) on behalf of GEM-TRD/T working group

TEAM:

- > TRD experts:
 - ✓ Yulia Furletova (EIC, Jefferson Lab)
 - ✓ Sergey Furletov (Hall-D, Jefferson Lab)
 - ✓ Lubomir Pentchev (Hall-D, Jefferson Lab)
- > GEM experts:
 - ✓ Kondo Gnanvo (University of Virginia)
 - ✓ Nilanga K. Liyanage (University of Virginia)
 - ✓ Matt Posik (Temple University)
 - ✓ Bernd Surrow (Temple University)

Electron Identification, Motivation

Physics at EIC:

- √ For rare physics, based on electron identification
- \checkmark Charmonium, light vector mesons (ρ, ω, φ)
- √ Tetraquarks and Pentaquarks (and other XYZ states)
- ✓ Open Charm physics via leptonic or semi-leptonic decays
- ✓ Di-lepton production
- √ Scattered electron identification at Large-x, large-Q2

New XYZ states at EIC

Excellent e/π PID in forward hadron region is needed for electron energy 1-100GeV

Hadron endcap detector

Environment:

- Background: High multiplicity heavy Ion collisions, large number of pions and Kaons in forward region.
- Large π^0 background.

Needs:

- 10^3 - 10^4 e/ π rejection factor required over wide (1-100GeV) energy range in the forward region (EMCAL e/ π rejection 50-100)
- High granularity tracker with low material budget, not very expensive=> GEM

Proposal:

Tracker combined with TRD/PID function: which could provide additional e/hadron rejection 10-100 and will cover energy range 1-100 GeV =>

GEM based transition radiation detector/tracker
GEM-TRD/T

Yulia Furletova ⁵

Why transition radiation detector?

- TRD separate particles by their gamma factor
- e/π separation in high γ region (1-100 GeV) where all other methods are not working anymore.
- Provide high rejection factor for a small detector length in a wide range of a particle momentum.
- Identification of the charged particle "on the flight": without scattering, deceleration or absorption.
- Typically TRD is either combined with tracking detector (ATLAS TRT) or provide additional tracking information in the region between RICH and CAL(HERA-B).

Brief introduction to Transition Radiation

 Transition radiation is produced by a charged particles when they cross the interface of two media of different dielectric constants

Figure 2: Electron microscope images of a polymethacrylimide foam (Rohacell HF71)(left) and a typical polypropylene fiber radiator (average diameter $\approx 25 \ \mu m$) (right) [52].

- the probability to emit one TR photon per boundary is of order $\alpha \sim 1/137$. Therefore multilayer dielectric radiators are used to increase the transition radiation yield, typically few hundreds of mylar foils.
- TR in X-ray region is extremely forward peaked within an angle of $1/\gamma$
- Energy of TR photons are in X-ray region (2 40 keV)
- Total TR Energy ETR is proportional to the γ factor of the charged particle
 Yulia Furletova

How easy to detect Transition Radiation?

- Stack of radiators and detectors (sandwich)
- For "classical" TRD (straws, MWPC) gas is needed for better absorption of TR photons: high Z required => Xenon gas (Z=54)
- TRDs are not "hadron-blind"! they see all charged particles dE/dx
- Several methods exist to identify TR photons on the top of dE/dx: (TR photons (5-30 keV) over a dE/dX background in Xe gas (2-3 keV)).
 - Discrimination by threshold (ATLAS)
 - Average pulse height along adjacent pads (or along a track) (ALICE) => (next slide)

TR detection in MWPC, Silicon

At MWPC:

For electrons - significant increase in the average pulse height at later drift times, due to the absorption of the transition radiation near the entrance of the drift chamber.

 $5-15\,\mathrm{cm}$

Yulia Furletova

Silicon DEPFET-pixels TRD

GEM as Transition Radiation detector and tracker for EIC

- High resolution tracker.
- > Low material budget detector
- How to convert GEM tracker to TRD:
 - ✓ Change gas mixture from Argon to Xenon (TRD uses a heavy gas for efficient absorption of X-rays)
 - ✓ Increase drift region up to 2-3 cm (for the same reason).
 - ✓ Add a radiator in the front of each chamber (radiator thickness ~5-10cm)
 - ✓ Number of layers depends on needs: Single layer could provide e/pi rejection at level of 10 with 90% electron efficiency.

Radiators

 The theory of transition radiation predicts that the best radiator is a stack of regular foils:

20-30µ mylar foils and 200-300µ air gap.

- ATLAS uses foils and spacer between foils to provide air gap.
- ZEUS and many other experiments used fleece radiator
- Proposals to use Graphene radiator:

Boron Nitride Nanotubes (BNNT company)

[&]quot;Measuring the Lorentz factors of energetic particles with transition radiation", M.Cherry, 10.1016/j.nima.2012.05.008

GEM -TRD/T prototype @ UVA

GEM-TRD/T cross section, 20mm drift volume

Drawing for the resistive divider

Stack of 3 GEMs

HV 5504 V, Resistive Divider = 7.404 M Ω , Max current = 747.3 μ A

Walls cross section (for field correction)

HV 5504 V, Resistive Divider = 7.404 MΩ, Max current = $747.3 \mu A$

Cosmic run with GEM-TRD/T prototype @ UVA

Decoded hits in x and y direction of TRDGEM

Test Setup at JLAB HALL-D

PROPOSAL FOR R&D

- > GEANT4 simulation of TRD setup with GEM detector
 - > Estimate e/pi rejection factor for different configurations: layers, gases, electron efficiencies...
- > Using the existing facility at JLAB Hall-D perform a test with "known" radiators (ATLAS, ZEUS, etc.) "proof of principle"
- > R&D and tests of other TR-radiators
 - nano-technological radiators from BNNT (BNNT company provides a test samples)
- > Test "existing" GEM front-end electronics and readout system for TRD purpose.
- Test different Xe-gas mixtures: drift time, voltages and gas-gain, adjustments.

PROPOSAL FOR R&D

Needs:

- > Xe gas (\$10 \$20 per liter)
- Material/equipment:
 - > GEM-TRD/T prototype modifications
 - > Radiators
 - > Mechanical boxes/support
 - ➢ Gas system: tubes/pipes, rotameters, pressure controls, CO₂ control (purification system is not needed for tests at the moment)
 - > DAQ-PC with disk storage
- > Travel to the testbeam

Thank you!

Backup

Xe -gas detectors

19

Silicon pixel TRD

Problem: A huge dE/dX of particles in $300-700\mu m$ of silicon - about 100-300keV (TR photons 4-40 keV).

DEPFET silicon pixel detector

- Low noise, high S/N with 450 μm thick fully depleted bulk(sensitive area), pixel size -20x20μm².
- TR photons are clearly visible and separated from track by a few pixels!

"New transition radiation detection technique based on DEPFET silicon pixel matrices", J.Furletova, S. Furletov, NIM-A 2010, http://dx.doi.org/10.1016/j.nima.2010.06.342
"Geant4 simulation of transition radiation detector based on DEPFET silicon pixel matrices", J. Furletova, S. Furletov, DOI: 10.1016/j.nima.2012.05.009

 Separation of TR and dE/dX in different pixels in magnetic field

2000 B. Dolgoshein proposed a design for ILC/TESLA detector (see proposal LC-DET-2000-038)

TRD with Straws

- The classical TRD is based on gaseous detectors filled with Xenon gas mixture to efficiently absorb transition radiation photons.
- Cluster discrimination by threshold method used to discriminate TR photons (5-30 keV) over a dE/dX background (2-3 keV).

ATLAS TRT Barrel

Simulated event, illustration of clusters from eletron/positron and pion hits – small blue dots are ionizing hits, large red dots are TR hits

ATLAS TRT

- -Straw tubes (proportional chambers) 4mm diameter and up to 144 cm long
- -drift time ~50ns
- -track reconstruction ~150-200 µm
- -e/pi rejection factor ~100.

Xe alternative?

- Xenon price is prohibitive to use it just like an Argon: \$15 \$20 per liter.
 - needed gas purification system.
- Is there any alternative to Xenon?: Krypton? Argon?

TR absorbtion

- Worked / used in many experiments
- Could cover large area.
- X/X0 ~0.2 % for 4cm of Xe
- $X/X0 \sim 1.5\%$ for 10 cm of radiator
- Problem: Xenon is very expensive => gas purification system is needed.

- NEW !!! R&D is needed
- $X/X0 \sim 1.5\%$ for 600μ m of Silicon
- $X/X0 \sim 1.5\%$ for 10cm of radiator
- Problem: price for DEPFET detector=> not for large areas => may be for Vertex?

24